位置:成果数据库 > 期刊 > 期刊详情页
Deep Web查询优化算法研究
  • ISSN号:1000-1220
  • 期刊名称:《小型微型计算机系统》
  • 时间:0
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]解放军69012部队,乌鲁木齐830031, [2]解放军电子工程学院网络工程系,合肥230037, [3]解放军96634部队,南昌330200, [4]解放军电子工程学院信息工程系,合肥230037
  • 相关基金:国家自然科学基金项目(60972161)资助; 国家242信息安全计划项目(2005C62)资助
中文摘要:

Deep Web查询是在指分析接口属性及其丰富的语义信息后构造的用于向数据源请求特定数据的语句,其质量将影响查询结果相关度的高低和查询代价的大小.为优化查询,提出一种基于量子遗传算法的优化算法,以Deep Web查询的实数二进制串为输入进行量子编码,引入了球面解空间多子群并行寻优机制、群间染色体置换操作和量子变异算子以丰富种群多样性、提高算法的寻优效率.实验结果表明,该算法在R-Precision、覆盖率上具有一定的优势,能够有效地减少查询次数.

英文摘要:

Deep Web query is a request sent to data sources after analyzing the properties and plentiful semantic information of interfaces to get the particular data,qualities of which can affect the relativity of results and the query cost.To optimize the query,this paper proposes an optimizing algorithm based on quantum genetic algorithm,which takes the binary string of Deep Web query as input that is encoded in quantum state.The algorithm introduces multi-swarms parallel searching mechanism in sphere solution spaces with a permutation operator among chromosomes and a quantum mutation operator to enrich the population and promote the efficiency of searching optimal solution.The experiment results indicate that comparing with other genetic algorithms,the algorithm performs well in R-Precision and coverage,and can reduce query count effectively.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《小型微型计算机系统》
  • 中国科技核心期刊
  • 主管单位:中国科学院
  • 主办单位:中国科学院沈阳计算技术研究所
  • 主编:林浒
  • 地址:沈阳市浑南新区南屏东路16号
  • 邮编:110168
  • 邮箱:xwjxt@sict.ac.cn
  • 电话:024-24696120 024-24696190-8870
  • 国际标准刊号:ISSN:1000-1220
  • 国内统一刊号:ISSN:21-1106/TP
  • 邮发代号:8-108
  • 获奖情况:
  • 中国自然科学核心期刊,中国科学引文数据库来源期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,荷兰文摘与引文数据库,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:23212