位置:成果数据库 > 期刊 > 期刊详情页
基于单边选择链和样本分布密度融合机制的非平衡数据挖掘方法
  • ISSN号:0372-2112
  • 期刊名称:电子学报
  • 时间:2014.7.15
  • 页码:1311-1319
  • 分类:TP18[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程] TP311.13[自动化与计算机技术—计算机软件与理论;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]Beijing Key Laboratory of Information Service Engineering, Beijing Union University, Beijing 100101, P. R. China, [2]National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, P. R. China
  • 相关基金:Supported by the National Natural Science Foundation of China ( No. 61300078 ), the Importation and Development of High-Caliber Talents Project of Beijing Municipal Institutions (No. CIT&TCD201504039), Funding Project for Academic Human Resources Development in Beijing Union University (No. BPHR2014A03, Rk100201510 ) , and "New Start" Academic Research Projects of Beijing Union University (No. Hzkl0201501 ).
  • 相关项目:基于多关系的模糊认知图挖掘模型、算法与评价机制研究
中文摘要:

Problems existin similarity measurement and index tree construction which affect the performance of nearest neighbor search of high-dimensional data. The equidistance problem is solved using NPsim function to calculate similarity. And a sequential NPsim matrix is built to improve indexing performance. To sum up the above innovations,a nearest neighbor search algorithm of high-dimensional data based on sequential NPsim matrix is proposed in comparison with the nearest neighbor search algorithms based on KD-tree or SR-tree on Munsell spectral data set. Experimental results show that the proposed algorithm similarity is better than that of other algorithms and searching speed is more than thousands times of others. In addition,the slow construction speed of sequential NPsim matrix can be increased by using parallel computing.

英文摘要:

Problems existin similarity measurement and index tree construction which affect the perform- ance of nearest neighbor search of high-dimensional data. The equidistance problem is solved using NPsim function to calculate similarity. And a sequential NPsim matrix is built to improve indexing performance. To sum up the above innovations, a nearest neighbor search algorithm of high-dimen- sional data based on sequential NPsim matrix is proposed in comparison with the nearest neighbor search algorithms based on KD-tree or SR-tree on Munsell spectral data set. Experimental results show that the proposed algorithm similarity is better than that of other algorithms and searching speed is more than thousands times of others. In addition, the slow construction speed of sequential NPsim matrix can be increased by using parallel computing.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《电子学报》
  • 中国科技核心期刊
  • 主管单位:中国科学技术协会
  • 主办单位:中国电子学会
  • 主编:郝跃
  • 地址:北京165信箱
  • 邮编:100036
  • 邮箱:new@ejournal.org.cn
  • 电话:010-68279116 68285082
  • 国际标准刊号:ISSN:0372-2112
  • 国内统一刊号:ISSN:11-2087/TN
  • 邮发代号:2-891
  • 获奖情况:
  • 2000年获国家期刊奖,2000年获国家自然科学基金志项基金支持,中国期刊方阵“双高”期刊
  • 国内外数据库收录:
  • 美国化学文摘(网络版),荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),英国英国皇家化学学会文摘,中国北大核心期刊(2000版)
  • 被引量:57611