位置:成果数据库 > 期刊 > 期刊详情页
自适应正则化核二维判别分析
  • ISSN号:1003-6059
  • 期刊名称:模式识别与人工智能
  • 时间:2014
  • 页码:1089-1097
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]辽宁师范大学数学学院,大连116029, [2]北京科技大学计算机与通信工程学院,北京100083
  • 相关基金:国家自然科学基金项目(No.61175048)、辽宁省教育厅科学研究项目(No.L2013408)资助
  • 相关项目:基于多关系的模糊认知图挖掘模型、算法与评价机制研究
中文摘要:

传统的半监督降维技术中,在原特征空间中定义流形正则化项,但其构造无助于接下来的分类任务.针对此问题,文中提出一种自适应正则化核二维判别分析算法.首先每个图像矩阵经奇异值分解为两个正交矩阵与一个对角矩阵的乘积,通过两个核函数将两个正交矩阵列向量从原始非线性空间映射到一个高维特征空间.然后在低维特征空间中定义自适应正则化项,并将其与二维矩阵非线性方法整合于单个目标函数中,通过交替优化技术,在两个核子空间提取判别特征.最后在两个人脸数据集上的实验表明,文中算法在分类精度上获得较大提升.

英文摘要:

In traditional semi-supervised dimension reduction techniques, the manifold regularization term is defined in the original feature space. However, its construction is useless in the subsequent classification. In this paper, adaptive regularization based kernel two dimensional discriminant analysis (ARKTDDA) is presented. Firstly, each image matrix is transformed as the product of two orthogonal matrices and a diagonal matrix by using the singular value decomposition method. The column vectors of two orthogonal matrices are transformed into high dimensional space by two kernel functions. Then, the adaptive regularization is defined in the low dimensional feature space, and it is integrated with two dimensional matrix nonlinear method into one single objective function. By altering iterative optimization, the discriminative information is extracted in two kernel subspaces. Finally, experimental results on two face datasets demonstrate that the proposed algorithm obtains considerable improvement in classification accuracy.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《模式识别与人工智能》
  • 中国科技核心期刊
  • 主管单位:中国科学技术协会 中国自动化学会
  • 主办单位:国家智能计算机研究开发中心 中国科学院合肥智能机械研究所
  • 主编:郑南宁
  • 地址:安徽省合肥市蜀山湖路350号中国科学院合肥智能机械研究所
  • 邮编:230031
  • 邮箱:bjb@iim.cas.cn
  • 电话:0551-5591176
  • 国际标准刊号:ISSN:1003-6059
  • 国内统一刊号:ISSN:34-1089/TP
  • 邮发代号:26-69
  • 获奖情况:
  • 国内外数据库收录:
  • 被引量:10169