提出了一种新的模糊认知图分类器模型构造方法,它包括构建流程、激活函数、推理规则和学习方法等核心构件.模型利用提出的动态交叉变异算子自适应遗传进化过程,实现种群间自动调节和自动适应.仿真实验表明:本文提出的模型增强了局部随机搜索能力,加强了算法的全局收敛能力,与其他经典分类方法相比,不但性能较好,而且具有较强的抗噪能力,从而具有更强的鲁棒性.
A novel construction method of classifier models based on the fuzzy cognitive map was proposed,which consists of model structure,activation functions,inference rules and learning algorithms.The model employs dynamically self-adaptive crossover and mutation operators to automatically adjust the evolution process within populations.Simulation experiments prove that the model enhances the capabilities of local random search and global convergence.Compared with other classical classification algorithms,the model not only shows a better classification performance,but also has powerful noise-immune ability which renders it robust.