位置:成果数据库 > 期刊 > 期刊详情页
图的邻接矩阵的行列式与积和式的递推表达式
  • 期刊名称:数学的实践与认识
  • 时间:0
  • 页码:222-227
  • 语言:中文
  • 分类:O157.5[理学—数学;理学—基础数学]
  • 作者机构:[1]青海民族大学数学学院,青海西宁810007
  • 相关基金:国家自然科学基金(10861009)
  • 相关项目:图的多项式研究及应用
作者: 扈生彪|
中文摘要:

设A(G)是简单图G的邻接矩阵,H是由G的独立边和不交圈组成的生成子图的集合,e是H中某个图的独立边,C是H中图的圈,且e∈E(C).记G—e是G的删边子图,G\W是从G中删去导出子图W中的顶点及其关联边后得到的图.那么A(G)的行列式为 detA(G)=detA(G-e)-detA(G\e)-2∑ c(-1)^|V(C)|detA(G/C) A(G)的积和式为 perA(G)=perA(G-e)+perA(G\e)+2∑ cperA(G\C) 这里,C取遍H中图的经过边e的圈.

英文摘要:

Let A(G) be an adjacency matrix of simple undirected graph G, H is a set of spanning subgraph of G consisting of disjoint edges and cycles, e is a disjoint edge of some graph in H , C is cycle of graph in H ,and e ∈ E(C). G - e is the subgraph of G obtained by deleting the edge e, G / W is the subgraph of G obtained by deleting the vertices in W and all edges incident with them. Then the determinant of A(G) is detA(G)=detA(G-e)-detA(G/e)-2∑ c(-1)^|V(C)|detA(G/C) A(G) Thepermanent of A(G) is perA(G)=perA(G-e)+perA(G/e)+2∑ cperA(G/C) Where,C ranges over the cycles of pass through the edge e of graphs in H.

同期刊论文项目
同项目期刊论文