设G是一个图,G,μ(G,x)和Z(G)分别表示图G的补图,匹配多项式和Hosoya指标,对Z(G)给出了由μ(G,x)表示的一个积分公式和一个求和公式;设H是Kn,n+a的一个生成子图,ρ(H,x)和H分别表示图H的卓多项式和完全二分补图,对Z(H)给出了由ρ(H,x)表示的一个积分公式和一个求和公式;最后提出了有关公式化简的两个问题.
Let G be a graph, G,μ(G,x) and Z(G) denote the complement graph, the matching polynomial and Hosoya index of G, respectively. In this paper, we gave an integral formula and a summation formula of Z(G) by using μ(G,x) ;Let H be a spanning subgraph of K,,.n+o ,ρ(H,x) and denote the rook polynomial and bipartite complement of H, we also gave an integral formula and a summation formula of Z(H) by using ρ(H,x);Finally raised two open problems about simplifying these formulas.