位置:成果数据库 > 期刊 > 期刊详情页
基于图像传感器的上下文快速压缩感知算法
  • ISSN号:1000-9787
  • 期刊名称:《传感器与微系统》
  • 时间:0
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:江南大学轻工过程先进控制教育部重点实验室,江苏无锡214122
  • 相关基金:国家自然科学基金资助项目(60973095); 江苏省自然科学基金资助项目(BK20131107)
中文摘要:

针对快速压缩感知算法在目标被遮挡、光照变化较大时存在跟踪不稳定的问题,提出了基于图像传感器的上下文快速压缩感知跟踪(FCT)算法。新算法首先在Haar-like特征中引入时空上下文特征,通过目标周围的空间信息和时间上的递推关系协助估计目标的位置。通过改进的随机测量矩阵同时提取目标的纹理特征和灰度特征,加强了特征的稳定性,提高跟踪的准确性。通过方差分类器预判定候选样本,减少判定的次数,并减少错误的候选样本。改进的FCT算法对光照、旋转、尺度缩放都有良好的不变性,且不易发生跟踪漂移。实验证明:改进的FCT算法优于压缩感知跟踪(CT)算法和FCT算法。

英文摘要:

Aiming at problems that fast compressive tracking( FCT),algorithm has poor robustness in target occlusion and illumination changes,propose a FCT algorithm with context based on image sensors. First,the new algorithm introduces temporal and spatial context features in the Haar-like feature,and assists to estimate target position by spatial information around target and time recurrence relation. By improved random measurement matrix,extract simultaneously texture features and gray features of target,stability of feature is enhanced,accuracy of target tracking is improved. Pre-judge candidate sample by variance classifier,reduce number of decision,reduce number of wrong candidate samples. The improved FCT algorithm has good invariance for illumination,rotation and scale changes,tracking drift also not easy to happen. It can be proved that the improved FCT algorithm is superior to CT and FCT algorithms.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《传感器与微系统》
  • 北大核心期刊(2011版)
  • 主管单位:中国电子科技集团公司
  • 主办单位:中国电子科技集团公司第四十九研究所
  • 主编:吴亚林
  • 地址:哈尔滨市南岗区一曼街29号四十九所
  • 邮编:150001
  • 邮箱:st_chinasensor@126.com
  • 电话:0451-82510965
  • 国际标准刊号:ISSN:1000-9787
  • 国内统一刊号:ISSN:23-1537/TN
  • 邮发代号:14-203
  • 获奖情况:
  • 获全国优秀科技期刊三等奖,获1996年度黑龙江省科技期刊评比,优秀科技期刊壹等奖,获《CAJ-CD》执行优秀奖,获信息产业部2001-2002年度电子科技期刊规范化奖,获信息产业部2003-2004年度优秀电子科技期刊奖,获信息产业部2005-2006年度优秀电子科技期刊奖,获工业和信息化部2007-2008年度电子精品科技期刊奖
  • 国内外数据库收录:
  • 中国中国科技核心期刊,中国北大核心期刊(2008版),中国北大核心期刊(2011版)
  • 被引量:10819