位置:成果数据库 > 期刊 > 期刊详情页
基于Harris角点和SURF特征的遥感图像匹配算法
  • ISSN号:1001-3695
  • 期刊名称:《计算机应用研究》
  • 时间:0
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术] TP301.6[自动化与计算机技术—计算机系统结构;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]南京理工大学计算机科学与技术学院,南京210094
  • 相关基金:国家自然科学基金资助项目(60773172);“青蓝工程”资助项目;江苏高校优势学科建设工程资助项目
中文摘要:

Harris是一种高效的角点检测算法,但不具备尺度不变性。SURF(speeded-up robust features)算法虽然能很好地解决图像尺度变化问题,但是在特征点提取方面没有Harris稳定。针对Harris和SURF两种算法的特点,提出一种新的Harris-SURF特征点提取算法。首先用Harris算法检测图像角点,再用SURF算法提取图像特征点;然后合并角点和特征点,并剔除重复点获得新的特征点集,确定新特征点的主方向并生成特征描述符,再对图像使用比值法进行初匹配;最后利用RANSAC剔除错误匹配点实现精确匹配。实验结果表明,该算法对图像存在旋转、缩放、光照及噪声变化有较强的鲁棒性,同时提高了运行效率。

英文摘要:

Harris is an efficient corner detection algorithm,but it doesn't have the scale invariance. SURF algorithm can solve the problem of image scale changes,but it is less stable than Harris in respect to feature point extraction. This paper proposed a new Harris-SURF feature point extraction algorithm according to the characteristics of Harris and SURF algorithm.Firstly,it extracted image corners using Harris algorithm and detected image feature points using SURF algorithm,then it merged corner points and feature points and eliminated duplicate points to obtain a new feature point set,and determined main directions of feature points and generated feature descriptors,then used ratio method to get initial matching. Finally,it used RANSAC to eliminate errors and achieve accurate matching. Experiments show that the algorithm has strong robustness for image with rotation,scaling,illumination and noise changes and improve efficiency.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机应用研究》
  • 北大核心期刊(2011版)
  • 主管单位:四川省科学技术厅
  • 主办单位:四川省计算机研究院
  • 主编:刘营
  • 地址:成都市成科西路3号
  • 邮编:610041
  • 邮箱:arocmag@163.com
  • 电话:028-85210177 85249567
  • 国际标准刊号:ISSN:1001-3695
  • 国内统一刊号:ISSN:51-1196/TP
  • 邮发代号:62-68
  • 获奖情况:
  • 第二届国家期刊奖百种重点科技期刊,国内计算技术类重点核心期刊,国内外著名数据库收录期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:60049