位置:成果数据库 > 期刊 > 期刊详情页
关于F-S-可补子群
  • 期刊名称:数学研究与评论,2007, 27(1), 207-211.
  • 时间:0
  • 分类:O152.1[理学—数学;理学—基础数学]
  • 作者机构:[1]徐州师范大学数学系,江苏徐州221116, [2]中国科学技术大学数学系,安徽合肥230026
  • 相关基金:国家自然科学基金(10471118#)
  • 相关项目:群的Sylow对象及相关公开问题研究
中文摘要:

设F是一个群类.群G的子群H称为在G中F-S-可补的,如果存在G的一个子群K,使得G=HK且K/K∩HG∈F,其中HG=∩g∈GH^g是包含在打中的G的最大正规子群.本文利用子群的F-S-可补性,给出了有限群的可解性,超可解性和幂零性的一些新的刻画.应用这些结果,我们可以得到一系列推论,其中包括有关已知的著名结果.

英文摘要:

Let F be a class of groups. A subgroup H of a group G is called F-S-supplemented in G if there exists a subgroup K of G such that G=HK and K/K∩HG∈F, where HG=∩g∈GH^g is the maximal normal subgroup of G contained in H. In this paper, By using F-S-supplemented subgroups, we give some new criteria for the solvability, nilpotency and supersolvability of finite groups. By these results, we may get a series of corollaries, which contain some known results.

同期刊论文项目
期刊论文 62 会议论文 26 著作 1
同项目期刊论文