传统的基于网格与密度的聚类方法需要用户输入间隔距离和密度阀值参数,聚类的结果不平滑,不能很好地判断边界对象的网格归属。提出了一种自动根据对象的数量确定间隔的距离和聚类的数量的聚类方法,合理地将对象进行聚类划分,并将聚类的结果构建Hilbert R-tree索引,通过实验表明算法在建立时间和其他性能上均优于传统的Hilbert R-tree索引。
In the traditional clustering methods based on grid and density,the interval and the density valve needs to be input with unsmoothed cluster,wrong judgement of clustering boundary.A clustering approach is proposed,which can confirm the interval and the number of clustering,reasonable cluster the object and create the Hilbert R-tree using the result of clustering.Experiment results show that the method is better than traditional Hilbert R-tree index in building time and other aspects.