针对水稻育苗用土资源日益减少、适用于密闭式水稻立体育秧基质缺乏等制约水稻工厂化育苗技术发展的问题,该文以粉碎稻壳、粉碎玉米秸秆、珍珠岩、大田土为基质材料,设计3种单一基质CK1(100%大田土)、CK2(100%盼碎玉米秸秆)、CK3(100%粉碎稻壳)和按体积比配制的6种复合基质S1(80%粉碎稻壳+10%大田土+10%珍珠岩)、S2(60%粉碎稻壳+20%大田土+20%珍珠岩)、S3(40%粉碎稻壳+40%大田土+20%珍珠岩)、T1(80%粉碎玉米秸秆+10%大田土+10%珍珠岩)、T2(60%粉碎玉米秸秆+20%大田土+20%珍珠岩)、T3(40%粉碎玉米秸秆+40%大田土+20%珍珠岩)进行育苗试验,并分析9种基质的理化指标,结果表明,各处理的理化指标含量差异显著;添加粉碎稻壳、粉碎玉米秸秆复合基质的秧苗品质要优于单一基质;添加玉米秸秆的复合基质(T1、T2、T3)秧苗品质要优于添加稻壳的复合基质(S1、S2、S3);粉碎稻壳、粉碎玉米秸秆的添加量对秧苗生长影响较大,其添加量在60%(S2和T2)时,秧苗的各性状表现最优,其他2个处理差异不显著。以秧苗的农艺、生物量、力学性能作为评价指标,最佳的复合基质配方为处理T2。田间栽培结果表明,与常规育苗模式(普通平面大棚+自然光+大田土)对比,经T处理(密闭式立体+LED日光灯+T2基质)的秧苗在穴数上没有差异,株高平均值117.9 cm,低于对照的常规育苗平均值121.8 cm;千粒质量平均值25.35 g;其他各项指标平均值均高于常规育苗,实测增产5.9%。该研究结果可为密闭式水稻立体育秧系统高效稳定生产提供参考。
Greenhouse seedling is the valuable mode to solve the problem of insufficient accumulated temperature for the rice production to realize the stable and high yield in Heilongjiang Province, China. However, the shortage of soil resources limits the application of seedlings field. Vegetation degradation and costly manpower are unfavorable for the protection of soil resources. Therefore, development of seedlings substrate to replace the soil is an effective way to solve these problems. Closed stereo seedlings of rice is a new way to improve the rice seedling, which may realize the automatic control of the environment to meet the requirement of the growth of seedlings in a relatively enclosed environment including temperature, humidity, light, CO2 concentration and nutrient solution. Natural conditions have little effect on the rice seedling growth in these enclosed environments. This seedling style has advantages of high space utilization, less dosage of field soil and strong adaptability, which helps to cope with frequent extreme weather and cold ground and cover a big area. Seedling substrate of closed stereo rice comes from the agricultural waste materials. It can not only avoid the destruction of farmland and reduce the transportation cost, but also solve the environmental pollution problem caused by the burning of agricultural waste to promote the development of circular agriculture. In this study, corn straw and rice husk were selected as grinding material and blended with perlite and field soil at different volume ratio. Seedling tests were carried out with 3 kinds of single substrate i.e. CK1 (100% field soil), CK2 (100% crushed corn stalks), and CK3 (100% crushed rice husk) and 6 kinds of composite matrix i.e. S1 (80% crushed rice husk + 10% field soil + 10% perlite), S2 (60% crushed rice husk + 20% field soil + 20% perlite), S3 (40% crushed rice husk + 40% field soil + 20% perlite), T1 (80% crushed corn stalks + 10% field soil + 10% perlite), T2 (60% crushed cor