载人月球车金属弹性筛网轮结构特殊,集驱动传动于一体,采用组合式铝合金轮毂,轮胎由内部弹性限止器和金属丝网胎面组成。基于轮地力学,采用半经验方法,综合质量及功率约束,在单轮驱动功率和扭矩计算的基础上,选取了轮毂驱动电机和谐波减速器等驱动组件。并分别基于静力分析和动态弯曲疲劳实验方法对组合式铝合金轮毂进行有限元分析及仿真,对其结构进行了设计及改进,同时对内部弹性限止器装配及金属丝网胎面的成形工艺进行了研究和实践,为研制适应月面未知崎岖地形,且载荷大、功耗低、驱动力大的载人月球车车轮奠定了技术基础。
The structure of flexible wire mesh tire for manned lunar roving vehicle is comparatively special. The integrated design of tire drive and transmission is implemented. It consists of assembled aluminum alloy hub, inner spring bump stop and wire mesh tire. Based on the wheel-soil interaction terramechanics and a part-experience method, the calculation of driving power and torque of single wheel is completed. Then the hub driving motors and harmonic reductions gears are selected by considering main technical factors such as mass and power constraints, etc. Finite element analysis of assembled aluminum alloy hub is done according to different conditions of static analysis and dynamic-bend fatigue experiment method. The structure of flexible wire mesh tire is improved by considering the results of finite element analysis. At the same time, the inner spring bump stop is analyzed and the technical flow-chart of wire mesh tire is researched and verified. This provides a technical basis for developing wheel for manned lunar roving vehicle which adapts deformable rough terrain on the lunar surface with large loaded, low power consumption and big driving force.