位置:成果数据库 > 期刊 > 期刊详情页
适用于机器人视觉的图像分割方法
  • ISSN号:1001-506X
  • 期刊名称:《系统工程与电子技术》
  • 时间:0
  • 分类:TP242.6[自动化与计算机技术—控制科学与工程;自动化与计算机技术—检测技术与自动化装置]
  • 作者机构:哈尔滨工程大学自动化学院,黑龙江哈尔滨150001
  • 相关基金:国家自然科学基金(51409053,61175089);黑龙江省自然科学基金(E201414)资助课题
中文摘要:

针对复杂图像分割问题开展研究,并以机器人视觉中目标搜索和识别问题为支撑目标,结合该背景明确提出了图像分割算法性能评价标准和侧重点,基于此约束,以Mean Shift分割方法为基础,并重点考虑了分割尺度的有效控制、分割过程兼顾场景深度信息等问题,对算法进行了针对性改进。针对分割尺度控制问题,提出了边缘敏感度的概念,提高了算法尺度分块的控制能力。针对深度信息融合问题,采用了双目视觉立体匹配和基于Kinect传感器的两种深度信息获取方法,均成功实现融合并提高了分割效果。实验结果表明,本文算法与传统Mean Shift算法相比具有明显优势,不仅能更有效地控制分割尺度,还能成功分割原算法难以分割的特殊情况。

英文摘要:

Complex image segmentation is studied to solve the problem of target searching and identification in robot vision. In this context, performance evaluation criteria and emphasis for image segmentation algorithm are proposed explicitly. A modified algorithm is developed based on Mean Shift segmentation methods fully taking into account the effective control of segmentation scale and the scene depth information of the segmenta-tion process. In order to solve the problem of controlling segmentation scale, the concept of edge sensitivity is proposed so that the control ability of the algorithm scale block is improved. Two methods of getting the depth information based on binocular stereo matching and image sensor Kinect are employed to deal with the depth in-formation fusion. Both methods realize the fusion successfully and the performances of segmentation are en-hanced obviously. The experiment results demonstrate that the proposed method is more preponderant than traditional algorithms. The proposed algorithm could not only control segmentation scale, but also split the special situations.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《系统工程与电子技术》
  • 北大核心期刊(2011版)
  • 主管单位:中国航天科工集团公司
  • 主办单位:中国航天科工防御技术研究院 中国宇航学会 中国系统工程学会
  • 主编:施荣
  • 地址:北京142信箱32分箱
  • 邮编:100854
  • 邮箱:xtgcydzjs@126.com
  • 电话:010-68388406
  • 国际标准刊号:ISSN:1001-506X
  • 国内统一刊号:ISSN:11-2422/TN
  • 邮发代号:82-269
  • 获奖情况:
  • 全国中文核心期刊,全国优秀科技期刊,中国科技论文统计用刊,中国期刊方阵“双百”期刊
  • 国内外数据库收录:
  • 德国数学文摘,荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:34341