超长引水隧洞水电站设置气垫式调压室可以有效抑制过渡过程中调压室涌浪振幅,但蜗壳压力的变化规律也因气垫式调压室的影响变得更为复杂。本文通过数值计算方法,分析了设气垫式调压室超长引水隧洞水电站大波动过渡过程中,导叶关闭时间、引水隧洞水流惯性、压力管道水流惯性及调压室参数∥等因素对蜗壳最大动水压力的影响;并与常规调压室进行对比,讨论了气垫式调压室对超长引水隧洞水电站甩负荷过渡过程中反射水击波特性的作用。结果表明:气垫式调压室对水击波的反射效果不如常规调压室,且气垫和涌浪压力之和最大值大于常规凋压室最大水压力,更容易发生蜗壳最大动水压力,此压力由调压室压力极值决定、不受导叶关闭规律控制的影响。
Air-cushion surge chamber can effectively suppresse the highest surge of hydropower station with long-distance diversion tunnel, but the changes of dynamic pressure in spiral case become more complex due to the influence of air- cushion surge chamber. This paper analyzes large oscillation transient process of hydropower station with long-distance diversion tunnel of air- cushion surge chambe by the effects of wicket closure time, water inertial time constant of diversion tunnel, water inertial time constant of pressure pipeline and parameter choice of air-cushion surge chamber on the maximum dynamic pressure in spiral case. This paper also compares the hammer wave reflection of air-cushion surge chamber with cormnon surge chamber in hydropower station with long-distance diversion tunnel. The results of numerical calculation indicate that hammer wave reflection of air-cushion surge chamber is inferior to common surge chamber. And maximum pressure of gas and surge in air-cushion surge chamber is lager. Therefor, maximum dynamic pressure in spiral case is more likely controlled by maximum pressure of air-cushion surge chamber other than wicket closure rule.