位置:成果数据库 > 期刊 > 期刊详情页
一种基于仿射传播的增强型流聚类算法
  • ISSN号:0253-987X
  • 期刊名称:《西安交通大学学报》
  • 时间:0
  • 分类:TP181[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程]
  • 作者机构:[1]西安交通大学软件学院,西安710049, [2]西安交通大学电子与信息工程学院,西安710049
  • 相关基金:国家自然科学基金资助项目(61371087,61531013);国家“863计划”资助项目(2015AA015702).
中文摘要:

针对目前流聚类算法无法有效处理数据流离群点的检测和处理,以及增量式数据流聚类效率较低等问题,提出了一种基于密度度量的异常检测、删除的增强型仿射传播流聚类算法。在仿射传播流聚类算法的基础上,所提算法通过引进异常检测和删除机制改善了异常点对聚类精度、聚类效率的影响。利用仿射传播聚类实现在线数据流的聚类过程,同时检测数据漂移现象,即数据流分布特征随时间发生变化,并采用基于密度度量的局部异常因子检测技术(LOF)对储备池数据进行异常检测和删除处理,通过对当前类簇和处理过的储备池数据重聚类来重建动态数据流模型。在真实网络数据(KDD’99)上进行了实验,结果表明,所提算法不仅减少了重聚类构建动态模型的次数,改善了聚类效率,而且在同时考虑聚类精度、纯度和熵3种聚类评价标准下,均优于传统的仿射传播流聚类算法。

英文摘要:

Aiming at the problem that the traditional stream clustering algorithm cannot effectively deal with the inspection and treatment of outliers, and the incremental data stream clustering efficiency is low, an enhanced stream clustering algorithm based on affinity propagation using density measurement was proposed. Based on the STRAP, the proposed algorithm can improve the clustering accuracy and efficiency by introducing a mechanism for outlier detection and removal. Firstly, the online stream clustering process is realized by the affinity propagation algorithm. Meanwhile, the phenomenon of data drift is detected, i. e. , the distribution of data stream changes with time. In view of this phenomenon, the new algorithm can implement the outlier detection and removal in the reservoir based on local outlier factor, and then re-cluster the current cluster and the treated reservoir to reconstruct the dynamic stream clustering model. Finally, through the validation on the KDD' 99 data, the experimental results showed that the proposed algorithm not only reduces the number of re-clustering and improves the clustering efficiency, but also is superior to the STRAP in terms of the three clustering evaluation criteria, i. e. , the clustering accuracy, purity and entropy.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《西安交通大学学报》
  • 中国科技核心期刊
  • 主管单位:中华人共和国教育部
  • 主办单位:西安交通大学
  • 主编:陶文铨
  • 地址:西安市咸宁西路28号
  • 邮编:710049
  • 邮箱:xuebao@mail.xjtu.edu.cn
  • 电话:029-82668337 82667978
  • 国际标准刊号:ISSN:0253-987X
  • 国内统一刊号:ISSN:61-1069/T
  • 邮发代号:52-53
  • 获奖情况:
  • 美国《工程索引》(EI光盘版)定期收录的中文期刊,《中文核心期刊目录总览》综合类核心期刊,科技部《科技论文统计与分析》统计源,《中国科学引文数据库》刊源,获全国高校优秀科技期刊一等奖,“百种中国杰出学术期刊”称号,中国期刊方阵“双效”期刊
  • 国内外数据库收录:
  • 美国化学文摘(网络版),美国数学评论(网络版),德国数学文摘,荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:27275