位置:成果数据库 > 期刊 > 期刊详情页
车辆尾灯灯语的检测与识别
  • ISSN号:1003-3254
  • 期刊名称:计算机系统应用
  • 时间:2015
  • 页码:213-218
  • 分类:TP309[自动化与计算机技术—计算机系统结构;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]中国科学技术大学信息科学技术学院,合肥230070, [2]中国科学院合肥智能机械研究所,合肥230031
  • 相关基金:国家自然科学基金(91120307,91320301)
  • 相关项目:面向城区综合环境的无人驾驶车辆关键技术及平台
中文摘要:

针对有效利用车辆灯语信息的问题,提出了一种基于图像的车辆尾灯灯语的检测识别新方法.该方法首先利用颜色、对称性特征在图像中检测出车辆尾灯对,并对车辆尾灯进行连续的跟踪.然后使用参数优化的最小二乘支持向量机(Least Squares Support Vector Machines,简称LS-SVM)对得到的车尾灯状态进行分类判别.最后结合状态历史信息,综合推断出各前方车辆当前灯语含义.以实车拍摄的白天道路视频进行实验,可以看到由识别出的灯语信息能够准确判断出前方车辆刹车、转向、灯不亮,表明该检测识别方法有效.

英文摘要:

In this paper, a new algorithm of taillight signals detection and recognition based on image is proposed. Firstly, the algorithm detects and tracks vehicle taillights using color and symmetry features of the images. Secondly, we employ parameters-optimized Least Squares Support Vector Machines (LS-SVM) to classify the current states of detected taillights. Finally, we set up state chains from past frames to recognize the signals of taillights. Through the experiments on the real road, we can see that the recognized signals can correctly indicate the behaviors of brake and turn of preceding cars, which shows that our algorithm is valid.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机系统应用》
  • 中国科技核心期刊
  • 主管单位:中国科学院
  • 主办单位:中国科学院软件研究所
  • 主编:苏振泽
  • 地址:北京8718信箱
  • 邮编:100190
  • 邮箱:csa@iscas.ac.cn
  • 电话:010-62661041
  • 国际标准刊号:ISSN:1003-3254
  • 国内统一刊号:ISSN:11-2854/TP
  • 邮发代号:82-558
  • 获奖情况:
  • 国内外数据库收录:
  • 波兰哥白尼索引,美国剑桥科学文摘,中国中国科技核心期刊,中国北大核心期刊(2000版)
  • 被引量:15201