图半监督学习(Graph based semi-supervised learning,GSL)方法需要花费大量时间构造一个近邻图,速度比较慢.本文提出了一种哈希图半监督学习(Hash graph based semi-supervised learning,HGSL)方法,该方法通过局部敏感的哈希函数进行近邻搜索,可以有效降低图半监督学习方法所需的构图时间.图像分割实验表明,该方法一方面可以达到更好的分割效果,使分割准确率提高0.47%左右;另一方面可以大幅度减小分割时间,以一幅大小为300像素×800像素的图像为例,分割时间可减少为图半监督学习所需时间的28.5%左右.
Graph based semi-supervised learning (GSL) method runs slowly because of the need of much time to construct a neighbor graph. This paper presents a hash graph based semi-supervised learning (HGSL) method, which can search neighbors by locality sensitive hashing function and efficiently reduce the time for GSL to construct a neighbor graph. Image segmentation experiments show that HGSL has an improvement of 0.47 % in average segmenting accuracy, and can greatly reduce the segmenting time, e.g., it takes about 28.5 % of the time for GSL to segment an image with size of 300 × 800.