位置:成果数据库 > 期刊 > 期刊详情页
近似最小树的哈希Dijkstra算法
  • ISSN号:0254-0037
  • 期刊名称:北京工业大学学报
  • 时间:0
  • 页码:1568-1572
  • 语言:中文
  • 分类:TQ015.3[化学工程]
  • 作者机构:[1]北京工业大学计算机学院,北京100124
  • 相关基金:国家自然科学基金资助项目(60775010,61175004);北京市自然科学基金资助项目(4112009);北京工业大学高层次人才培养资助项目.
  • 相关项目:基于极大紧邻子树和神经网络的聚类分类模型及其在生物特征识别中的应用
中文摘要:

为了解决Dijkstra(DK)算法对大规模数据构造最小树时效率不高的问题,结合局部敏感哈希映射(LSH),针对欧氏空间中的样本,提出了一种近似最小树的快速生成算法,即LSHDK算法.该算法通过减少查找近邻点的计算量提高运行速度.计算实验结果表明,当数据规模大于50000个点时,LSHDK算法比DK算法速度更快且所计算的近似最小树在维数较低时误差非常小(0.00—0.05%),在维数较高时误差通常为0.1%~3.0%.

英文摘要:

In order to overcome the low efficiency of Dijkstra (DK) algorithm in constructing Minimal Spanning Trees (MST) for large-scale datasets, this paper uses Locality Sensitive Hashing (LSH) to design a fast approximate algorithm, namely, LSHDK algorithm, to build MST in Euclidean space. The LSHDK algorithm can achieve a faster speed with small error by reducing computations in search of nearest points. Computational experiments show that it runs faster than the DK algorithm on datasets of more than 50 000 points, while the resulting approximate MST has an small error which is very small (0.00 - 0.05% ) in low dimension, and generally between 0. 1% -3.0% in high dimension.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《北京工业大学学报》
  • 中国科技核心期刊
  • 主管单位:北京市教委
  • 主办单位:北京工业大学
  • 主编:卢振洋
  • 地址:北京市朝阳区平乐园100号
  • 邮编:100124
  • 邮箱:xuebao@bjut.edu.cn
  • 电话:010-67392535
  • 国际标准刊号:ISSN:0254-0037
  • 国内统一刊号:ISSN:11-2286/T
  • 邮发代号:2-86
  • 获奖情况:
  • 中国高等学校自然科学学报优秀学报二等奖,北京市优秀期刊,华北5省市优秀期刊,中国期刊方阵“双效”期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),美国数学评论(网络版),德国数学文摘,荷兰文摘与引文数据库,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:11924