位置:成果数据库 > 期刊 > 期刊详情页
基于网络分析和联系熵的煤与瓦斯突出预测研究
  • ISSN号:1673-193X
  • 期刊名称:《中国安全生产科学技术》
  • 时间:0
  • 分类:TD745.21[矿业工程—矿井通风与安全]
  • 作者机构:[1]邢台学院,河北邢台054000, [2]华北科技学院计算机学院,北京东燕郊101601, [3]高河能源有限公司,山西长治047100
  • 相关基金:国家自然科学基金(51274100),中央高校基本科研业务费资助(JSJ1207B,3142015103)
中文摘要:

为了提高识别矿山水害水源(即,判定水的类型)的正确率,利用免疫算法设计并优化了反向传播神经元网络(BPNN)的结构并求得BPNN的各层权系数和阈值的初值,用该初值训练BPNN,获得最佳的BPNN各层的权系数(权重)和阈值,使其适合识别矿山水害水源。用训练好的BPNN识别待判定的水源是哪一种类型的水源,判定水源的危害程度。实验和潞安集团所属煤矿区的矿井和钻孔水样检验结果说明用该方法是有效可行的,识别矿井水的水源的准确率可达到93%。

英文摘要:

In order to improve the recognition correct rate of flood water( that is, recognition correct rate of type of water), the structure and the weight coefficient (weight) and threshold of each layer of back -propagation neural network(BPNN) are designed and optimized with Immune Algorithm. The BPNN is trained, to get the optimal weight coefficient (weight) and threshold of each layer of BPNN. Finally, the trained BPNN is used to identify the type of water source to be judged, and the degree of water hazard is determined. Lu'an Group coal mine and drilling water and experimental results show that the method is feasible and efficient, and the detec- tion right rate of flood waters was above 93 %.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《中国安全生产科学技术》
  • 北大核心期刊(2014版)
  • 主管单位:国家安全生产监督管理局
  • 主办单位:中国安全生产科学研究院
  • 主编:张兴凯
  • 地址:北京市朝阳区惠新西街17号
  • 邮编:100029
  • 邮箱:aqscjs@vip.163.com
  • 电话:010-64941346
  • 国际标准刊号:ISSN:1673-193X
  • 国内统一刊号:ISSN:11-5335/TB
  • 邮发代号:82-379
  • 获奖情况:
  • 国内外数据库收录:
  • 美国化学文摘(网络版),波兰哥白尼索引,美国剑桥科学文摘,中国中国科技核心期刊,中国北大核心期刊(2008版),中国北大核心期刊(2014版)
  • 被引量:14319