位置:成果数据库 > 期刊 > 期刊详情页
基于Sector/Sphere的气相色谱-质谱联用多样本并行对齐算法
  • ISSN号:1001-9081
  • 期刊名称:Journal of Computer Applications
  • 时间:2013.1.1
  • 页码:215-218
  • 分类:TP399[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]桂林电子科技大学电子工程与自动化学院,广西桂林541004, [2]中国科学院植物研究所植物分子生理学重点实验室,北京100093
  • 相关基金:国家自然科学基金资助项目(30860381,31200227);广西自然科学基金资助项目(2012GXNSFAA053230);国家863计划项目(2012AA10A304);广西高等学校优秀人才资助计划项目(桂教人[2011]40号);广西可信软件重点实验室开放基金资助项目(kx201121)
  • 相关项目:水稻杂种优势的代谢模式研究
中文摘要:

针对气相色谱-质谱联用(GC-MS)数据处理过程复杂且计算量大、处理时间过长而严重拖延实验进度的问题,以多样本保留时间对齐为例,设计了基于分布式平台Sector/Sphere的GC—MS数据处理并行框架,实现了多样本并行对齐算法。首先分布式计算所有样本的相似度矩阵;然后依据层次聚类原理将原样本集划分为小样本集,分布式对齐各小样本集内部的样本;最后以各小样本集的平均样本作为对齐依据合并各样本集的对齐结果。实验结果表明:多样本并行对齐算法的错误率为2.9%,由4台Pc组成的集群处理大量样本时,最高加速比达到3.29;能够在保证较高正确率的前提下提升计算速度,解决处理时间过长的问题。

英文摘要:

To deal with the problem that the process of Gas Chromatography-Mass Spectrography (GC-MS) data is complex and time consuming which delays the whole experimental progress, taking the alignment of multiple samples as an example, a parallel framework for processing GC-MS data on Sector/Sphere was proposed, and an algorithm of aligning multiple samples in parallel was implemented. First, the similarity matrix of all the samples was computed, then the sample set was divided into small sample sets according to hierarchical clustering and samples in each set were aligned respectively, finally the results of each set were merged according to the average sample of the set. The experimental results show that the error rate of the parallel alignment algorithm is 2.9% and the speedup ratio reaches 3.29 using the cluster with 4 PC, which can speed up the process at a high accuracy, and handle the problem that the processing time is too long.

同期刊论文项目
期刊论文 4 会议论文 1
同项目期刊论文
期刊信息
  • 《计算机应用》
  • 北大核心期刊(2011版)
  • 主管单位:四川省科学技术协会
  • 主办单位:四川省计算机学会中国科学院成都分院
  • 主编:张景中
  • 地址:成都市人民南路四段九号科分院计算所
  • 邮编:610041
  • 邮箱:xzh@joca.cn
  • 电话:028-85224283
  • 国际标准刊号:ISSN:1001-9081
  • 国内统一刊号:ISSN:51-1307/TP
  • 邮发代号:62-110
  • 获奖情况:
  • 全国优秀科技期刊一等奖,国家期刊奖提名奖,中国期刊方阵双奖期刊,中文核心期刊,中国科技核心期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:53679