位置:成果数据库 > 期刊 > 期刊详情页
基于区间二型模糊模型的高分辨率遥感影像分割方法
  • ISSN号:0254-3087
  • 期刊名称:《仪器仪表学报》
  • 时间:0
  • 分类:TP790[自动化与计算机技术—控制科学与工程;自动化与计算机技术—检测技术与自动化装置]
  • 作者机构:辽宁工程技术大学测绘与地理科学学院遥感科学与应用研究院,阜新123000
  • 相关基金:国家自然科学基金(编号:41271435,41301479);辽宁省自然科学基金(编号:2015020190)
中文摘要:

为了实现影像的自动化分割,提出一种利用非监督方式将观测数据采样化的遥感影像分割方法。该方法利用欧氏空间的概率分布建模采样数据和观测数据,并将其映射到黎曼空间,通过不断将观测数据转换为采样数据的方式实现影像的自动采样化。每次采样过程只需计算观测数据点到采样点的测地线距离,将距采样点测地线距离最小的观测数据转化为采样数据,以保证采样数据不断趋于该类数据的真实分割结果,同时使算法能够有效分割具有不同像素数的类别。将算法应用于模拟影像和真实遥感影像分割,对其分割结果以及传统基于统计、基于模糊的非监督算法和基于神经网络的监督算法相应分割结果定性定量的对比分析验证了该算法的有效性及可行性。

英文摘要:

Image segmentation is a very common application in remote sensing, in which the number of classes is always given by users. To segment remote sensing images automatically, a sampling method which can transmit observed data into sample data is proposed based on the characteristics in Riemannian space. Therefore, this paper presents an unsupervised image segmentation algorithm which can automatic- ally segment remote sensing images by sampling the detected data into samples. First, model the initial samples obtained by block sampling or artificial sampling through Gaussian probability distribution function (pdf). Second, to take the neighborhood system of the detected image into consideration, Gaussian pdf is also employed to depict the fea- tures of the pixel and its correlation between neighbor pixels. Then both the samples and the detected image are mapped to the Riemannian space. In the Riemannian space, the similarity between the points expressing the detected image and the points standing for samples are measured by geodesic, which is the least distance on the curve surface of a manifold. The nearest points standing for the detected image to each sample are transmitted to samples and then the models of the samples are updated according to the new ones. By continually sampling, the models of the samples are tending to their real models, which represents the real segmentation through sampling the detected data. In each sample process, only the nearest detected data are transformed into sample data to make sure the presented algorithm can distinguish different classes with different number ofpixels in it. Geodesic employed in this paper evaluates the differences between the detected model and the sample model to improve the accuracy of sampling. The proposed algorithm is carried out on synthetic and real remote sensing images. Experiments on synthetic image shows the changes of samples both in the image and in feature space. Display of the sampling process demonstrate that the models characterizing each cl

同期刊论文项目
同项目期刊论文
期刊信息
  • 《仪器仪表学报》
  • 中国科技核心期刊
  • 主管单位:中国科学技术协会
  • 主办单位:中国仪器仪表学会
  • 主编:张钟华
  • 地址:北京东城区北河沿大街79号
  • 邮编:100009
  • 邮箱:yqyb@vip.163.com
  • 电话:010-84050563
  • 国际标准刊号:ISSN:0254-3087
  • 国内统一刊号:ISSN:11-2179/TH
  • 邮发代号:2-369
  • 获奖情况:
  • 1983年评为机械部科技进步三等奖,1997年评为中国科协优秀科技期刊三等奖
  • 国内外数据库收录:
  • 美国化学文摘(网络版),荷兰文摘与引文数据库,美国工程索引,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),英国英国皇家化学学会文摘,中国北大核心期刊(2000版)
  • 被引量:42481