大部分回归技术假设误差服从Gauss分布,并把最小化误差的平方和作为优化目标.然而,风电预报的噪声不服从Gauss分布,而是服从Beta分布.在ν-支持向量回归的基础上,本文提出一种基于不等式约束的Beta噪声支持向量回归(BN-SVR)的新模型,并将其应用于短期风速预报中.实验结果说明,模型BN-SVR是有效可行的,且较经典支持向量回归模型获得更好的性能.
A lot of regression techniques assume that the errors satisfy the Gaussian distribution and use least-squared errors as the optimization objectives.However,the noise of wind power forecasting does not obey the Gaussian distribution but the Beta distribution.An extension of the support vector regression,called an improved SVR based on Beta-noise model of inequality constraints(BN-SVR),is proposed in this work.Our experimental results on the real-world data sets of wind speed confirm the validity and feasibility of our BN-SVR,and it obtains better performance than ν-SVR,GN-SVR and HN-SVR.