位置:成果数据库 > 期刊 > 期刊详情页
基于邻域粗糙集的多标记分类特征选择算法
  • ISSN号:1000-1239
  • 期刊名称:计算机研究与发展
  • 时间:2015
  • 页码:56-65
  • 分类:TP391.1[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]山西大学计算机与信息技术学院,太原030006, [2]山西大学计算智能与中文信息处理教育部重点实验室,太原030006
  • 相关基金:国家自然科学基金资助项目(61573231,61632011,61672331,61432011,U1435212);国家“八六三”高技术项目(2015AA015407);山西省科技基础条件平台计划项目(2015091001-0102)
  • 相关项目:多模态数据知识发现
中文摘要:

为了同时挖掘商品口碑数据中所谈论的对象、对象的某个方面以及评论者对这个方面的观点,用于指导消费者消费和生产厂家对商品的改进,该文面向口碑数据提出一个无监督对象方面情感联合模型。该模型假设方面分布依赖于对象分布,情感分布依赖于方面分布和对象分布,词是采样的最小单位。在汽车口碑数据上进行了多组实验,实验结果表明:无监督对象方面情感联合模型不仅可以判别文本方面和文本情感的类别,还可以获取文本对象信息。

英文摘要:

This paper presents a probabilistic graphical model to simultaneously extract objects, aspects and sentiments from commodity reputation data. The underlying assumption is that the aspect distribution depends on the object distribution, while the sentiment distribution depends on the aspect distribution. The model further assumes that words are the smallest sampling units and is fully unsupervised. Tests on car reputation data show that this model can predict the aspect and sentiment categories of commodity reviews and can simultaneously extract object information from the reviews.

同期刊论文项目
期刊论文 34 会议论文 1
同项目期刊论文
期刊信息
  • 《计算机研究与发展》
  • 中国科技核心期刊
  • 主管单位:中国科学院
  • 主办单位:中国科学院计算技术研究所
  • 主编:徐志伟
  • 地址:北京市科学院南路6号中科院计算所
  • 邮编:100190
  • 邮箱:crad@ict.ac.cn
  • 电话:010-62620696 62600350
  • 国际标准刊号:ISSN:1000-1239
  • 国内统一刊号:ISSN:11-1777/TP
  • 邮发代号:2-654
  • 获奖情况:
  • 2001-2007百种中国杰出学术期刊,2008中国精品科...,中国期刊方阵“双效”期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,荷兰文摘与引文数据库,美国工程索引,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:40349