研究了最常用的衡量全局空间自相关的指标:全局Moran指数和全局G系数,基于模拟的空间区域,设计了一些有代表性的空间聚集方案进行计算,比较了两种指标的探测结果。得出的初步结论是:G系数探测高值聚集的能力强于低值聚集;当研究范围内同时存在高值和低值聚集时,G系数会受聚集区域规模的影响,当高值聚集区域和低值聚集区域规模相当时,G系数往往为正数,表明G系数对高值敏感;Moran指数主要受聚集区域规模的影响,随着空间聚集范围的扩展,Moran指数会明显增大。这些结论对于探测空间自相关模式时选择何种全局指标有指导意义。
Moran's Index and Getis-Ord general G are among the most commonly used indices for the analysis of general spatial autocorrelation.This paper compared Moran's Index and Getis-Ord General G,based on simulating computation,the results showed that:Getis-Ord general G is more sensitive to high clusters than low ones.When high and low cluster coexist at the study area,Getis-Ord general G will be affected by the scale of cluster.G will more likely to be positive to indicate high cluster when the scale of high and low cluster are equal;Moran's Index is mainly affected by the scale of clusters,it will increase when the scale is extended.These conclusions are useful in selecting general index to detect the spatial autocorrelation pattern.