多元切触插值问题是一元切触插值问题的自然推广。以往构造多元切触插值格式最一般方法是行列式方法。然而该方法在插值条件较多的情况下使用起来比较笨拙,特别是当条件选的不恰当时可能由于方程组的奇异性进而求不出插值格式。近些年来,随着科学技术的不断发展,一些科研生产部门常常需要进行多元切触插值,由于插值区域的复杂性和插值结点分布多样性,以往的文献多是针对矩形网格上的多元插值问题来进行研究的。运用迭加插值法来构造一些二元切触插值格式,这种方法可容许某些不规则的插值条件。这样既可以保证插值多项式的存在与唯一性,又便于求得具体的插值格式,并在已有结论的基础上,构造了一类圆域上的二元四次切触格式来说明如何运用迭加插值法来构造二元切触插值格式的,最后用计算实验验证了所构造出插值格式的有效性。
In this paper ,some of superposition interpolation methods to construct a binary osculatory interpolation formula are discussed . This approach allow some irregular interpolation conditions w hich can ensure the existence and uniqueness of interpolation ,and is easy to obtain specific interpo-lation formula .Based on the eastablished conclusion ,the structure of the binary four circular inter-polation domain osculatory is illustrated that how to use the superposition interpolation method to construct a binary osculatory interpolation formula ,w hich is used to calculate the final article experi-ments and show that the structure of the interpolation formula is effective .