用溶胶-凝胶方法合成了Mn3O4和Ce掺杂Mn3O4.采用X射线衍射(XRD)、傅里叶变换红外(FT-IR)光谱、场发射扫描电镜(FESEM)和透射电子显微镜(TEM)对其结构和形貌进行了表征.采用循环伏安、电化学交流阻抗和恒流充放电技术对其电化学性能进行了测试.研究结果表明,Ce掺杂对Mn3O4的形貌和电化学性能均有显著影响.当Ce离子占金属离子总量的3%时,掺杂Mn3O4的单电极比电容高达477F·g^-1,比未掺杂的提高了43.7%,并且表现出更好的循环稳定性.
Mn3O4 and Ce doped Mn3O4 were synthesized via a sol-gel route using metal nitrates as raw materials and citric acid as the chelating agent. The gel precursors were calcined at 300℃ for 12 h in a muffle furnace. Their morphology and structure were characterized using powder X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, field emission scanning electron microscopy (FESEM), and transmission electron microscopy (TEM). Their electrochemical performance as a supercapacitor electrode material was investigated comparatively by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and galvanostatic charge-discharge. The experimental results indicated that Ce- doping did not change the structure of Mn3O4 but greatly affected the morphology and considerably enhanced the electrochemical performance of Mn3O4. A specific capacitance of 477 F· g^-1 was obtained when the mole ratio of Ce ion to total metal ions was 3%, which was 43.7% higher than that of the undoped material. Moreover, Ce-doping significantly improved the capacitance retention ability.