化学氧化被用来切并且在横向的方向和轴的方向解开多围的碳 nanotubes 形成 graphene 氧化物 nanoribbon (GONR ) 。钌氧化物 / 还原剂 graphene 氧化物 nanoribbon 合成(有装载的 72.5 wt% RuO 2 的 RuO 2/rGONR) 通过水阶段的反应被综合在哪个 GONR 作为开始材料被服务,在周围的空中由温和热处理列在后面。产生 RuO 2/rGONR 合成在三电极的系统使用在 1 A·g −1 的当前的密度完成特定的电容直到 677 F·g −1 1 mol·L −1 H 2 同样多象电解质一样。结果的电极展出一个优秀的率能力(在 20 A·g −1) 的 91.8% 保留率。特别,根据 RuO 2/rGONR 电极装配的对称的 supercapacitor 交付高精力密度(甚至在为 supercapacitors 很必要的 9885 W·kg −1, 的力量密度的 16.2 Wh·kg −1) 。
Chemical oxidation is used to cut and unzip multi-walled carbon nanotubes in the transverse direction and the axial direction to form graphene oxide nanoribbon (GONR). Ruthenium oxide/reduced graphene oxide nanoribbon composite (RuO2/rGONR) with a 72.5 wt% RuO2 loading is synthesized through an aqueous-phase reaction, in which GONR is served as starting material, followed by mild thermal treatment in ambient air. The resulting RuO2/rGONR composite achieves specific capacitance up to 677 F.g l at the current density of 1 A·g^-1 in three-electrode system using 1 mol·L^-1 H2SO4 as electrolyte. The resultant electrode exhibits an excellent rate capability (91.8% retention rate at 20 A·g^-1). Especially, the symmetric supercapacitor assembled on the basis of RuO2/rGONR electrode delivers high energy density (16.2 Wh·kg^-1) even at the power density of 9885 W·kg^-1, which is very essential for supercapacitors.