基于非磁性材料开腔光量子阱结构设计了非磁性闭腔光量子阱和磁性材料光量子阱结构。用时域有限差分法(FDTD)计算了这三种量子阱结构的透射谱和光场分布,研究了各量子阱中的量子化能态,论证了完全依靠自身结构在很大程度上增强透射光谱强度的可行性。研究发现,光子隧穿磁性光量子阱结构时透射率接近1,能量损失小;与非磁性闭腔光量子阱结构相比,能够减小器件体积,增加能带工程的自由调节度,获得更加丰富的光子束缚态,因而更具优越性。计算结果表明,开腔光量子阱为行波阱,这种阱俘获光子的能力较弱;闭腔光量子阱和磁性材料光量子阱均为驻波阱,局域光子的能力很强,且磁性材料光量子阱可以产生更大的光场梯度。
The non-magnetic material closed optical quantum well structures and magnetic material optical quantum well structures are designed based on the non-magnetic material open optical quantum well structures. The transmission spectra and field distributions of these three kinds of wells are calculated by finite-difference time- domain method (FDTD), the quantized energy states are researched, and the feasibility of enhancing spectral intensity greatly by self-structure is disclosed. It is found that the optical transmittance of the magnetic quantum well is close to 1, and energy loss is less. Compared with the closed photonic quantum well structures, the device% volume can be reduced, the degree of free regulation of energy band project can be increased, and more photon bound states can be obtained. The results show that the open optical quantum well is traveling wave well, and its capability of capturing photons is weak. But the closed quantum well and the magnetic material optical quantum well are standing wave well, the capabilities for them to capture photons are strong, while the light field gradient of the magnetic material optical quantum well is bigger.