位置:成果数据库 > 期刊 > 期刊详情页
Effect of Heat Source Sliding Contact on the CoPtCr-based Magnetic Recording Disk
  • ISSN号:1002-185X
  • 期刊名称:Rare Metal Materials and Engineering
  • 时间:0
  • 页码:128-131
  • 分类:TG146.4[金属学及工艺—金属材料;一般工业技术—材料科学与工程;金属学及工艺—金属学]
  • 作者机构:Xi An Jiao Tong Univ, Sch Mech Engn, Key Lab Educ Minist Modern Design & Rotor Bearing, Xian 710049, Peoples R China
  • 相关基金:NSFC(90923027 and 51050110137);The Fundamental Research Funds for Central Universitie
  • 相关项目:ECR纳米表面的极端制造原理与方法研究
中文摘要:

Effect of heat source sliding contact on the CoPtCr-based magnetic recording disk was investigated.A tribo-test of the disk with low load heat source and the scan of disk with magnetic head were sequentially carried out.Then disk samples in the contact area were observed by atomic force microscopy(AFM)and magnetic force microscopy(MFM).A finite element model using thermomechanical coupling was developed to calculate the mechanical and thermal response of the disk under heat source sliding contact based on the experimental results.It was found that data loss load under sliding contact with a heat source was far less than that without a heat source,and mechanical scratches and demagnetization did not occur in the data loss area under the experimental conditions.The finite element analysis(FEA)results indicate that the thin surface DLC coating has more significant effect on the mechanical response than the thermal response of the magnetic layer.

英文摘要:

Effect of heat source sliding contact on the CoPtCr-based magnetic recording disk was investigated.A tribo-test of the disk with low load heat source and the scan of disk with magnetic head were sequentially carried out.Then disk samples in the contact area were observed by atomic force microscopy(AFM)and magnetic force microscopy(MFM).A finite element model using thermomechanical coupling was developed to calculate the mechanical and thermal response of the disk under heat source sliding contact based on the experimental results.It was found that data loss load under sliding contact with a heat source was far less than that without a heat source,and mechanical scratches and demagnetization did not occur in the data loss area under the experimental conditions.The finite element analysis(FEA)results indicate that the thin surface DLC coating has more significant effect on the mechanical response than the thermal response of the magnetic layer.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《稀有金属材料与工程》
  • 中国科技核心期刊
  • 主管单位:中国科学技术协会
  • 主办单位:中国有色金属学会 中国材料研究学会 西北有色金属研究院
  • 主编:张平祥
  • 地址:西安市51号信箱
  • 邮编:710016
  • 邮箱:RMME@c-nin.com
  • 电话:029-86231117
  • 国际标准刊号:ISSN:1002-185X
  • 国内统一刊号:ISSN:61-1154/TG
  • 邮发代号:52-172
  • 获奖情况:
  • 首届国家期刊奖,中国优秀期刊一等奖,中国有色金属工业优秀期刊1等奖
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),荷兰文摘与引文数据库,美国工程索引,美国科学引文索引(扩展库),英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:24715