位置:成果数据库 > 期刊 > 期刊详情页
基于数据信息串行时间延迟处理的BP网络训练
  • 期刊名称:北京师范大学学报,2010,46(3):414-416(中文核心)
  • 时间:0
  • 分类:TP183[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程]
  • 作者机构:[1]吉林大学环境与资源学院,长春130026, [2]大庆石油管理局供水公司,黑龙江大庆163453
  • 相关基金:国家自然科学基金资助项目(50879028)
  • 相关项目:基于水文气象因素耦合作用的中长期径流预报机理及方法研究
中文摘要:

通过实验对比的方法,验证了数据串行时间延迟处理对于提高BP神经网络对时间序列问题模拟精度的有效性,并将其应用于黄河下游夹河滩至高村段河道洪水预报中.预报检验结果表明,方法的预报精度优于马斯京根法.在洪水预报的实际应用中,采用N=2的延迟线不但使训练样本具有时序效应,而且能将洪水时段水位(流量)变幅的概念赋予网络,使训练样本蕴含了更多的信息,能有效提高模型的预报精度.

英文摘要:

The validity of data serial time-delay treatment is verified, which can improve simulation precision of the BP network on temporal series by the way of experimental comparison. The model is then used to forecast the river flood between Jiahetan and Gaocun of the lower reaches of the Yellow River. The result showed that the forecasting precision of BP network model which is accomplished by the above method is superior to that of the Muskingum method. In the practical application of flood forecasting, the delay line may adopt N=2. Not only do the training samples have time order effect, but also can give the variation of flood level (discharge) to the network in such kind of network. The training samples contain more information. It has a great significance to improve forecasting precision of the intelligent on the flood process.

同期刊论文项目
同项目期刊论文