矩阵因式分解是为大规模数据处理和分析的一个有效工具。非否定的矩阵因式分解(NMF ) 方法,把非否定的矩阵分解成二个非否定的因素矩阵,为矩阵因式分解提供一个新方法。NMF 在聪明的信息处理和模式识别是重要的。这篇论文第一介绍 NMF 和一些新相关方法的基本想法。然后,我们基于我们的研究,和在感性的过程的 NMF 和信息处理之间的关系在概率的模型的框架讨论损失功能和 NMF 的相关算法。最后,我们使我们成为文件结束 NMF 处理模式识别的一些实际问题并且指出一些为 NMF 打开问题。
Matrix factorization is an effective tool for large-scale data processing and analysis. Nonnegative matrix factorization (NMF) method, which decomposes the nonnegative matrix into two non- negative factor matrices, provides a new way for matrix factorization. NMF is significant in intelligent information processing and pattern recognition. This paper firstly introduces the basic idea of NMF and some new relevant methods. Then we discuss the loss functions and relevant algorithms of NMF in the framework of probabilistic models based on our researches, and the relationship between NMF and information processing of perceptual process. Finally, we make use of NMF to deal with some practical questions of pattern recognition and point out some open problems for NMF.