位置:成果数据库 > 期刊 > 期刊详情页
基于永磁操动机构的同步合闸时间预测方法研究
  • ISSN号:1003-5060
  • 期刊名称:《合肥工业大学学报:自然科学版》
  • 时间:0
  • 分类:TP273.5[自动化与计算机技术—控制科学与工程;自动化与计算机技术—检测技术与自动化装置]
  • 作者机构:[1]合肥工业大学电气与自动化工程学院,安徽合肥230009
  • 相关基金:国家自然科学基金资助项目(61304007)
中文摘要:

为了提高相控开关动作时间预测精度,抑制电容器投切产生的过电压和涌流,文章建立了以控制电压和环境温度为输入的前馈网络预测模型;为了提高模型预测精度,提出基于遗传算法(genetic algorithm,GA)和粒子群算法优化神经网络的补偿方法,并对算法优化前、后网络预测性能进行比较。研究结果表明,经过遗传算法和粒子群优化后的前向神经网络模型比没有优化的有更好的预测精度。

英文摘要:

To improve the action time forecasting accuracy in phase-controlled swltclllng, ano suppres~ the overvoltage and inrush current generated by capacitor switching, an operating time forecasting model is developed. This model is a BP neural network with the control voltage and temperature as in- put variables. To improve the action time forecasting accuracy o~ the model, the optimization method of neural network with genetic algorithm(GA) or particle swarm optimization(PSO) is proposed. The performance of the neural network model with GA or PSO is compared with that without optimiza- tion. The research results show that the BP neural network model optimized with GA or PSO posses- ses better forecasting accuracy than that without optimization.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《合肥工业大学学报:自然科学版》
  • 中国科技核心期刊
  • 主管单位:中华人民共和国教育部
  • 主办单位:合肥工业大学
  • 主编:何晓雄
  • 地址:合肥市屯溪路193号
  • 邮编:230009
  • 邮箱:XBZK@hfut.edu.cn
  • 电话:0551-2905639
  • 国际标准刊号:ISSN:1003-5060
  • 国内统一刊号:ISSN:34-1083/N
  • 邮发代号:26-61
  • 获奖情况:
  • 1999中国优秀高校自然科学学报,1997华东地区优秀期刊,1998安徽省优秀科技期刊,中国期刊方阵“双效”期刊
  • 国内外数据库收录:
  • 美国化学文摘(网络版),美国数学评论(网络版),德国数学文摘,美国剑桥科学文摘,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版)
  • 被引量:19655