利用线性互补问题与二次规划之间的关系,推广了求解二次规划的KKT内点法,并用于线性互补问题,分析了推广算法的全局收敛性和局部收敛性.数值实验表明,算法对求解几类线性互补问题是有效的.
In this paper,Newton-KKT interior-point methods for indefinite quadratic programming is extended and applied to some special linear complementarity problems.Global and local quadratic convergence properties of the extended method are analyzed under nondegeneracy assumptions.Numerical results show that the proposed method is practical.