位置:成果数据库 > 期刊 > 期刊详情页
量化关联规则在高校就业信息数据中的应用
  • ISSN号:1673-629X
  • 期刊名称:《计算机技术与发展》
  • 时间:0
  • 分类:TP311[自动化与计算机技术—计算机软件与理论;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]江苏大学计算机科学与通信工程学院,江苏镇江212013, [2]南京审计学院信息科学学院,江苏南京210029
  • 相关基金:国家自然科学基金资助项目(71271117);江苏省科技型企业技术创新资金项目(BC2012201)
中文摘要:

针对就业信息数据中存在着大量的量化属性和分类属性等现象,提出了一种基于k-means的量化关联规则挖掘方法。该方法利用聚类算法k-means对量化属性进行合理分区,将量化属性转化为布尔型;利用改进的布尔关联规则方法对此进行关联规则挖掘,找出学生的受教育属性和就业属性之间的关联性;对挖掘出的规则进行分析和运用。就业信息数据实验证明,文中所提方法对就业信息进行挖掘是有效的、可行的。

英文摘要:

In view of the phenomenon such as a lot of quantitative attributes and categorical attributes among the employment information data,proposed an algorithm for mining quantitative association rules based on k-means. This method uses k-means clustering algorithm to partition the quantitative attributes reasonably and convert quantitative attributes to Boolean type;use the improved Boolean association rules method to conduct mining association rules on this to find the correlation between student' s educational attributes and employment attributes;analyze and apply the rules. Employment information data experimental results show that the presented method is effective and feasible in mining the employment information data.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机技术与发展》
  • 中国科技核心期刊
  • 主管单位:陕西省工业和信息化厅
  • 主办单位:陕西省计算机学会
  • 主编:王守智
  • 地址:西安市雁塔路南段99号
  • 邮编:710054
  • 邮箱:ctad@vip.163.com
  • 电话:029-85522163
  • 国际标准刊号:ISSN:1673-629X
  • 国内统一刊号:ISSN:61-1450/TP
  • 邮发代号:52-127
  • 获奖情况:
  • 《CAJ-CD规范》执行优秀期刊
  • 国内外数据库收录:
  • 中国中国科技核心期刊
  • 被引量:21263