位置:成果数据库 > 期刊 > 期刊详情页
高分辨率遥感影像目标分类与识别研究进展
  • ISSN号:1560-8999
  • 期刊名称:《地球信息科学学报》
  • 时间:0
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]河南大学环境与规划学院,开封475004, [2]河南大学空间信息处理实验室,开封475004, [3]河南大学计算机与信息工程学院,开封475004, [4]河南大学软件学院,开封475004
  • 相关基金:国家自然科学基金项目(61305042;61202098); 国防科技工业民用专项科研技术研究项目(2012A03A0939); 河南省教育厅科学技术研究重点项目(13A520071)
中文摘要:

高分辨率遥感影像的目标分类与识别,是对地观测系统进行图像分析理解,以及自动目标识别系统提取目标信息的重要手段。本文综述了当前国内外在可见光、红外、合成孔径雷达和合成孔径声纳等遥感影像的目标分类与识别的关键技术和最新研究进展。首先,讨论了高分辨率遥感影像的目标分类与识别问题的主要研究层次和内容;其次,深入分析了高分辨率遥感影像目标分类与识别,在滤波降噪、特征提取、目标检测、场景分类、目标分类和目标识别的关键技术及其所存在的问题;最后,结合并行计算、神经计算和认知计算等技术,讨论了目标分类与识别的可行性方案。具体包括:(1)高性能并行计算在高分辨率遥感图像处理的主流技术,并给出了基于Hadoop+Open MP+CUDA的高分辨率遥感影像混合并行处理架构;(2)深度学习对于提升目标分类和识别精度的应用前景,以及基于深度神经网络的多层次遥感影像目标识别方法;(3)认知计算在解决遥感影像大数据不确定性分析的模型与算法,并讨论了层次主题模型的多尺度遥感影像场景描述方案。此外,根据媒体神经认知计算的相关研究,探讨了遥感影像大数据的目标分类和识别的发展趋势和研究方向。

英文摘要:

Target classification and recognition(TCR) of high resolution remote sensing image is an important approach of image analysis, for the understanding of earth observation system(EOS), and for extracting information from the automatic target recognition(ATR) system, which has important values in military and civil fields. This paper reviews the latest progress and key technologies between domestic and international remote sensing image TCR in optical, infrared, synthetic aperture radar(SAR) and synthetic aperture sonar(SAS). The main research levels and the contents of high resolution remote sensing image TCR are firstly discussed. Then,the key technologies and their existing problems of high resolution remote sensing image TCR are deeply analyzed, from aspects such as filtering and noise reduction, feature extraction, target detection, scene classification, target classification and target recognition. Finally, combined with the related technologies including parallel computing, neural computing and cognitive computing, the new methods of TCR are discussed. Specifically, the main framework includes three aspects, which are detailed in the following. Firstly,the predominant techniques of high resolution remote sensing image processing are discussed based on high performance parallel computing. And the hybrid parallel architecture of high resolution remote sensing image processing based on Apache Hadoop, open multi-processing(Open MP) and compute unified device architecture(CUDA) are also presented in this paper. Secondly, application prospects of TCR accuracy promotion are analyzed based on a thorough study of neuromorphic computing, and the method of multi-level remote sensing image target recognition based on the deep neural network(DNN) is introduced. Thirdly, the model and algorithm of big data uncertainty analysis for remote sensing images are discussed based on probabilistic graphical model(PGM) of cognitive computing, and the multi-scale remote sensing image scene descript

同期刊论文项目
同项目期刊论文
期刊信息
  • 《地球信息科学学报》
  • 中国科技核心期刊
  • 主管单位:中国科学院
  • 主办单位:中国科学院地理科学与资源研究所 中国地理学会
  • 主编:徐冠华
  • 地址:北京大屯路甲11号
  • 邮编:100101
  • 邮箱:sxfu@lreis.ac.cn
  • 电话:010-64888891
  • 国际标准刊号:ISSN:1560-8999
  • 国内统一刊号:ISSN:11-5809/P
  • 邮发代号:82-919
  • 获奖情况:
  • 国内外数据库收录:
  • 中国中国科技核心期刊,中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版)
  • 被引量:3181