扩展卡尔曼滤波算法在直达波(Line-Of-Sight,LOS)和非直达波(None-Line-Of-Sight,NLOS)混合环境中存在显著的误差.该文根据混合噪声概率密度函数的数值近似公式,提出了一种基于传播环境LOS/NLOS二元状态信息的粒子滤波算法.仿真结果表明,利用了二元环境信息和混合噪声密度的粒子滤波算法能明显改善对移动目标的跟踪估计精度.
Large tracking error has been found in the use of classic extended Kalman filter in LOS/NLOS hybrid environment. This paper presents a modified particle filter algorithm based on the LOS/NLOS binary state information of propagation environment using the numerical method of the Probability Density Fnction (PDF) about the hybrid noise. Simulation results show that the new scheme integrated the LOS/NLOS environment information and the hybrid noise density can improve the tracking estimation accuracy effectively.