栖息地边界对景观结构和功能具深远影响,既影响局部又作用于更大尺度区域的生态过程,同时界面的动态特征通过反馈机制影响着不同种群、群落以及生态系统。因此,在景观生态界面研究中,界面尺度依赖性和时空动态性的定量化研究已成为模型和统计学者的研究热点。鉴于此,通过介绍生态界面描述、界面监测及相关边界动态变化特征研究,阐述统计学和数学方法在不同生态系统、生态过程及尺度下界面研究中的应用,同时指出两者结合研究在生态界面定量的研究中仍面临着概念和方法上的挑战,为进一步提高景观生态界面综合研究水平提供参考。
Ecological boundary is defined a zone between contrasting habitat patches that delimits the spatial heterogeneity of a landscape, and ecological boundaries influencing ecological process across different scales and between a wide variety of habitats profoundly affect the structure and function of landscapes. Moreover, boundaries themselves are dynamic entities that affect diverse populations, communities, and ecosystems through feedback mechanisms between them. In particular, these issues of scale dependence and spatial-temporal dynamics are undergoing the considerable attention from modelers and statisticians who have been devoted to the quantitative study of ecological boundaries. In this article, the linkages between methods of delineating boundaries, monitoring boundary changes, and modeling edge-related dynamics are presented. In addition, the statistical and mathematical approaches to the study of ecological edges and boundaries are clarified for different ecosystems, ecological processes, and scales with the aim of improving the level of comprehensive research on ecological boundaries in fragment habitats. Further, the existing conceptual and methodological problems faced by statisticians and modelers are addressed in particular, while emphasizing on topics that would benefit from integrating boundary detection and dynamic modeling.