位置:成果数据库 > 期刊 > 期刊详情页
基于RSM和BP-AdaBoost-GA的红茶发酵性能参数优化
  • ISSN号:1000-1298
  • 期刊名称:《农业机械学报》
  • 时间:0
  • 分类:TS272.4[农业科学—茶叶生产加工;轻工技术与工程—农产品加工及贮藏工程;轻工技术与工程—食品科学与工程] TP183[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程]
  • 作者机构:[1]江苏大学食品与生物工程学院,镇江212013, [2]中国农业科学院茶叶研究所,杭州310008, [3]哥本哈根大学食品科学系,菲特烈堡999017
  • 相关基金:国家自然科学基金项目(31271875); 浙江省自然科学基金项目(Y16C160009); 浙江省重点研发计划项目(2015C02001)
中文摘要:

为明确自行设计的滚筒式红茶发酵机性能参数,以无量纲化的综合评分为发酵品质评价指标,采用响应面法和基于改进型神经网络的遗传算法(BP-AdaBoost-GA)对影响发酵品质的3个因素(发酵温度、发酵时间、翻拌间隔)进行优化,并对2种方法的优化效果进行比较。结果表明,各因素对发酵品质的影响重要性顺序为:发酵温度、翻拌间隔、发酵时间;采用响应面法优化,当发酵温度、发酵时间、翻拌间隔分别为25℃、150 min、20 min时,综合评分预测值和实际值分别为0.863和0.856,相对误差为0.8%;而采用BP-AdaBoost-GA优化,当发酵温度、发酵时间、翻拌间隔分别为27℃、170 min、25 min时,预测值和实际值分别为0.871和0.868,相对误差为0.3%;BPAdaBoost预测模型的决定系数和相对分析误差分别为0.994和18.456,高于响应面法的0.988和9.577,且预测均方根误差较低,为0.017。在红茶发酵工艺的参数优化中,采用BP-AdaBoost-GA方法能比响应面法更好地拟合模型,以及在全局变量范围内推导最优发酵条件。

英文摘要:

Fermentation is the key procedure in processing of congou black tea, which directly decides the quality and flavor of tea products. Fermentation experiments were conducted on a novel drum-type fermentation machine as the platform, the performance parameters of fermentation machine were clarified. Methodologically, with dimensionless comprehensive scores as a measure of fermentation quality, response surface methodology (RSM) and back-propagation adaptive boosting based genetic algorithm (BP- AdaBoost- GA) were used separately to optimize three parameters (fermentation temperature x1, fermentation time x:, rotational interval x3 ) that affect fermentation quality. Also the optimizing effects of RSM and BP- AdaBoost- GA were compared. Results showed that the importance degrees of the three parameters ranked as x1 〉x3 〉x2. With RSM at xt =25℃ , x2 = 150 min and x3 =20 min, the predicted and actual values of comprehensive scores were 0. 863 and 0. 856, respectively, showing relative error of 0. 8%. With BP-AdaBoost-GA at xI =27℃ , x2 = 170 min and x3 =25 min, the predicted and actual values of comprehensive scores were 0. 871 and 0. 868, respectively, showing relative error of 0. 3%. When the BP- AdaBoost had seven nodes in the hidden layer and a prediction error threshold of 0.25, its determination coefficient was greater than that of RSM (0. 994 vs 0. 988) , and it had lower root mean square error of prediction (RMSEP) of 0. 017 and residual predictive deviation (RPD) equaled to 18. 456. Both RSM and BP- However, the fitting ability of AdaBoost - GA were feasible for optimization of fermentation parameters. RSM was limited because it was based on quadratic polynomial regression,while the fitting ability over experimental data was limited. The algorithm combining improved neural network and GA had higher global extremum prediction ability and higher accuracy. Thus, it can be concluded that even though RSM was the most widely used method for fermentation parameter optimization, BP- A

同期刊论文项目
同项目期刊论文
期刊信息
  • 《农业机械学报》
  • 中国科技核心期刊
  • 主管单位:中国科学技术协会
  • 主办单位:中国农业机械学会 中国农业机械化科学研究院
  • 主编:任露泉
  • 地址:北京德胜门外北沙滩一号6号信箱
  • 邮编:100083
  • 邮箱:njxb@caams.org.cn
  • 电话:010-64882610 64867367
  • 国际标准刊号:ISSN:1000-1298
  • 国内统一刊号:ISSN:11-1964/S
  • 邮发代号:2-363
  • 获奖情况:
  • 荣获中国科协优秀期刊二等奖,1997~2000年连续4年获中国科协择优资金,被列入中国期刊方阵,中国期刊方阵“双效”期刊
  • 国内外数据库收录:
  • 美国化学文摘(网络版),英国农业与生物科学研究中心文摘,荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:42884