对多圆盘上的平方可积函数f和g,研究了Bergman空间上稠密定义的Hankel乘积HfHg^*的有界性和紧性.给出了这些算子有界和紧的一些必要条件和充分条件.当f是解析函数时,对混合Haplitz乘积HgTf和TfHg^*得到了相似的结果.
This paper considers the question for which square integrable functions f and g on the polydisk the densely defined Hankel products HfHg^* are bounded on the Bergman space of the polydisk. Furthermore, the author obtains similar results for the mixed Haplitz products HgTf and TfHg^*, where f and g are square integrable on the polydisk and f is analytic.