位置:成果数据库 > 期刊 > 期刊详情页
Ligand effects on electronic and optoelectronic properties of two-dimensional PbS necking percolative superlattices
  • ISSN号:1000-6818
  • 期刊名称:《物理化学学报》
  • 时间:0
  • 分类:O[理学]
  • 作者机构:[1]CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China, [2]University of Chinese Academy of Sciences, 19 A Yuquan Rd, Shijingshan District, Beijing 100049, China, [3]Key Laboratory of Molecular Optoelectronic Sciences, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
  • 相关基金:Acknowledgements This work was supported financially by Chinese ministry of science and technology (No. 2016YFA0200700), National Basic Research Program of China (No. 2014CB931801, Z. Y. T.), National Natural Science Foundation of China (No. 21473044, C. G. L.; Nos. 21475029 and 91427302, Z. Y. T.), Instrument Developing Project of the Chinese Academy of Sciences (No. YZ201311, Z. Y. T.), CAS-CSIRO Cooperative Research Program (No. GJHZ1503, Z. Y. T.), and "Strategic Priority Research Program" of Chinese Academy of Sciences (No. XDA09040100, Z. Y. T.).
中文摘要:

The inter-nanocrystal (NC) distance, necking degree, ordering level, and NC surface ligands all affect the electronic and optoelectronic properties of NC solids. Herein, we introduce a unique PbS structure of necking percolative superlattices to exclude the morphological factors and study the effect of ligands on the NC properties. X-ray photoelectron spectroscopy data indicate that 1,2-ethanedithiol (EDT), oxalic acid, mercaptopropionic acid, and NH4SCN (SCN) ligands were attached to the surface of NCs by substrate-supported ligand exchange. Field-effect transistors were tested and photodetector measurements were performed to compare these NC solids. An SCN-treated film had the highest mobility and responsivity under high-power intensity irradiation owing to its high carrier density, whereas an EDT-treated film had the lowest mobility, photocurrent, and dark current. These findings introduce new avenues for choosing suitable ligands for NC applications.

英文摘要:

The inter-nanocrystal (NC) distance, necking degree, ordering level, and NC surface ligands all affect the electronic and optoelectronic properties of NC solids. Herein, we introduce a unique PbS structure of necking percolative superlattices to exclude the morphological factors and study the effect of ligands on the NC properties. X-ray photoelectron spectroscopy data indicate that 1,2-ethanedithiol (EDT), oxalic acid, mercaptopropionic acid, and NH4SCN (SCN) ligands were attached to the surface of NCs by substrate-supported Iigand exchange. Field-effect transistors were tested and photodetector measurements were performed to compare these NC solids. An SCN-treated film had the highest mobility and responsivity under high-power intensity irradiation owing to its high carrier density, whereas an EDT-treated film had the lowest mobility, photocurrent, and dark current. These findings introduce new avenues for choosing suitable ligands for NC applications.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《物理化学学报》
  • 中国科技核心期刊
  • 主管单位:中国科学技术协会
  • 主办单位:北京大学化学与分子工程学院承办
  • 主编:刘忠范
  • 地址:北京大学化学楼
  • 邮编:100871
  • 邮箱:whxb@pku.edu.cn
  • 电话:010-62751724
  • 国际标准刊号:ISSN:1000-6818
  • 国内统一刊号:ISSN:11-1892/O6
  • 邮发代号:82-163
  • 获奖情况:
  • 中文核心期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),荷兰文摘与引文数据库,美国科学引文索引(扩展库),英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),英国英国皇家化学学会文摘,中国北大核心期刊(2000版)
  • 被引量:24781