利用Cm上亚纯函数的性质(包括值分布理论),研究Cm上亚纯函数唯一性像集有关问题,并证明以下定理:令S={z∈Cm:zn-1=0},a为非零复数,且a2■S,k≥2为整数。f,g为Cm上级小于1的非常数亚纯函数,sum from b∈S(μ~bf,k)=sum from b∈S(μbg,k),且SuppDaf=SuppDag,则若n〉(4+3/k+2/(k+1))(1+ε),得f=g。
Using the properties of meromorphic functions on Cm (including Nevanlinna theory), we studied the problems of unique range set for meromorphic functions on Cm. The following results were obtained: Let f,g be two nonconstant meromorphic functions on Cm with order less than 1 a, be a nonzero complex number such that a2 S,k2,be an int ger. Suppose that S={zeC=:z"--l=O},bes b =bes b f.k tt,,k, and 2 Supp D}=SuppD,If n〉(4q- +k--@--i) (l+e),then f=go