设G为有限阿贝尔群,群环Zpr[G]中的理想称为Zpr上的阿贝尔码。对G的任意子集X,由离散Fourier变换和根定义Zpr[G]中的一个理想Ix。对于G的m-劈分定义四类码。这些码中的任一个码都称为乙,[G]中的m-adic码,在此定义的基础上,给出Z2r上triadic码的存在条件。
Let G be a finite Abelian group, an ideal in the grouping Zpr[G] is called an Abelian code over Zpr. For any subset X of G, an ideal Ix in Zpr[ G] is defined by means of discrete Fourier transformant and Zeros. For an m-splitting of G, 4 class codes are defined. Any of these codes is called an m-adic code. Existent conditions for tridic codes over Zpr are presented.