位置:成果数据库 > 期刊 > 期刊详情页
基于联合媒体相关模型的图像自动标注改进算法
  • ISSN号:0254-0037
  • 期刊名称:《北京工业大学学报》
  • 时间:0
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]北京工业大学电子信息与控制工程学院,北京100124
  • 相关基金:+国家自然科学基金资助项目(30970780)
中文摘要:

为了充分利用标注词间的相关性,提高图像标注精度,解决图像检索中的语义鸿沟问题,提出了一种基于联合媒体相关模型的图像自动标注改进算法.该算法将标注词和图像的联合概率求解过程转换成在标注词条件下图像出现的概率和标注词的先验概率的求解过程,减少了高频候选标注词对概率统计模型的影响,同时引入语义相似语言模型,利用上下文关联词矢量表示每个标注词,通过估计1幅图像的1组相关性最大的标注词来实现对图像的标注.与基于联合媒体相关图像自动标注算法相比,在标注过程中,本算法不再假设模型中各标注词之间是相互独立的,充分考虑标注词上下文的相关性信息,提高了图像标注精度;对标准的Corel图像集实验结果表明,基于联合媒体相关模型的图像自动标注改进算法是有效的.

英文摘要:

A image annotation algorithm based on Cross Media Relevance Model was proposed to bridge the semantic gap of content-based image retrieval. The algorithm reduced the word bias observed in probabilistic models by converting the word-image joint probability to image probability conditioned on annotation words and estimated the probability of a set of annotation words by measuring the semantic similarities of each annotation word to all other word. It used a contextual term vector to represent a annotation word, and implemented image annotation by estimating maximum correlation between an image and a set of annotation words. Compared with image annotation algorithm based on Cross Media Relevance Model, the proposed algorithm stopped making the assumption that each keyword was independent to each other, instead, took contextual relevance information of annotation words into account. Experimental results on the typical corel dataset demonstrated the effectiveness and the increasing annotation precision of the proposed algorithm.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《北京工业大学学报》
  • 中国科技核心期刊
  • 主管单位:北京市教委
  • 主办单位:北京工业大学
  • 主编:卢振洋
  • 地址:北京市朝阳区平乐园100号
  • 邮编:100124
  • 邮箱:xuebao@bjut.edu.cn
  • 电话:010-67392535
  • 国际标准刊号:ISSN:0254-0037
  • 国内统一刊号:ISSN:11-2286/T
  • 邮发代号:2-86
  • 获奖情况:
  • 中国高等学校自然科学学报优秀学报二等奖,北京市优秀期刊,华北5省市优秀期刊,中国期刊方阵“双效”期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),美国数学评论(网络版),德国数学文摘,荷兰文摘与引文数据库,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:11924