位置:成果数据库 > 期刊 > 期刊详情页
Co-regulated Protein Functional Modules with Varying Activities in Dynamic PPI Networks
  • ISSN号:1003-9775
  • 期刊名称:《计算机辅助设计与图形学学报》
  • 时间:0
  • 分类:Q51[生物学—生物化学] S858.315.3[农业科学—临床兽医学;农业科学—兽医学;农业科学—畜牧兽医]
  • 作者机构:[1]Department of Electronic Information and Control Engineering,Beijing University of Technology, [2]Department of Computer Science and Engineering,State University of New York at Buffalo
  • 相关基金:Acknowledgements The research work was supported by the National Natural Science Foundation of China (No. 30970780) and Ph.D. Programs Foundation of Ministry of Education of China (No. 20091103110005).
中文摘要:

Current methods for the detection of differential gene expression focus on finding individual genes that may be responsible for certain diseases or external irritants. However, for common genetic diseases, multiple genes and their interactions should be understood and treated together during the exploration of disease causes and possible drug design. The present study focuses on analyzing the dynamic patterns of co-regulated modules during biological progression and determining those having remarkably varying activities, using the yeast cell cycle as a case study. We first constructed dynamic active protein-protein interaction networks by modeling the activity of proteins and assembling the dynamic co-regulation protein network at each time point. The dynamic active modules were detected using a method based on the Bayesian graphical model and then the modules with the most varied dispersion of clustering coefficients, which could be responsible for the dynamic mechanism of the cell cycle, were identified. Comparison of results from our functional module detection with the state-of-art functional module detection methods and validation of the ranking of activities of functional modules using GO annotations demonstrate the efficacy of our method for narrowing the scope of possible essential responding modules that could provide multiple targets for biologists to further experimentally validate.

英文摘要:

Current methods for the detection of differential gene expression focus on finding individual genes that may be responsible for certain diseases or external irritants. However, for common genetic diseases, multiple genes and their interactions should be understood and treated together during the exploration of disease causes and possible drug design. The present study focuses on analyzing the dynamic patterns of co-regulated modules during biological progression and determining those having remarkably varying activities, using the yeast cell cycle as a case study. We first constructed dynamic active protein-protein interaction networks by modeling the activity of proteins and assembling the dynamic co-regulation protein network at each time point. The dynamic active modules were detected using a method based on the Bayesian graphical model and then the modules with the most varied dispersion of clustering coefficients, which could be responsible for the dynamic mechanism of the cell cycle, were identified. Comparison of results from our functional module detection with the state-of-art functional module detection methods and validation of the ranking of activities of functional modules using GO annotations demonstrate the efficacy of our method for narrowing the scope of possible essential responding modules that could provide multiple targets for biologists to further experimentally validate.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机辅助设计与图形学学报》
  • 北大核心期刊(2011版)
  • 主管单位:中国科学技术协会
  • 主办单位:中国计算机学会
  • 主编:鲍虎军
  • 地址:北京2704信箱
  • 邮编:100190
  • 邮箱:jcad@ict.ac.cn
  • 电话:010-62562491
  • 国际标准刊号:ISSN:1003-9775
  • 国内统一刊号:ISSN:11-2925/TP
  • 邮发代号:82-456
  • 获奖情况:
  • 第三届国家期刊奖提名奖
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,荷兰文摘与引文数据库,美国工程索引,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:24752