为了得到Schrodinger-KdV方程的行波解,运用平面动力系统理论方法,对其动力学行为进行研究,证明了该方程光滑孤立波解和光滑周期波解的存在性,并在不同的参数条件下,给出了各类解存在的充分条件,求出了所有显式精确行波解。
In order to obtain the traveling wave solution of Schrdinger-KdV equation,the bifurcation theory of dynamical system is used to studied the bifurcation behavior of Schrdinger-KdV equation,the existence of solitary wave solution and smooth periodic wave solution is obtained,Under the different parametric conditions,various sufficient conditions to guarantee the existence of the above solutions are given,All exact explicit parametric representations of the above waves are determined.