[目的/意义]从大数据时代下数据管理的复杂性出发,探讨数据管理的新特征和提升数据管理能力的主要策略。[方法/过程]以数据管理成熟度模型为理论基础,论述了大数据时代下数据管理从结果派到过程派的理念变革,即管理对象从后端管理到全生命周期管理,管理目标从数据管理向数据治理。结合现状,分析大数据管理面临的数据战略的确定与应用数据边界不明,潜在价值巨大与处理分析技术滞后,数据的分析应用与数据的安全及隐私等主要矛盾。[结果/结论]对于大数据时代下数据管理能力的提升可从需求、技术、措施及目标4个层面开展。
Abstract: [ Purpose/significance ] From the complexity of data management in the era of big data, this paper explores new features of data management and main strategies to enhance data management capabilities. [ Method/process] Based on the theory of data management maturity model, the paper discusses the changes in the ideas of data management: from result-oriented to process-oriented, namely changing the management object from backend management to whole life cycle management and manage- ment goals from data management to data governance. Combined with the current situation, the paper analyzes the major contractions between a clear data strategy and unknown boundary of application data, the great potential value of data and lagging data analysis techniques, data applications and data security and privacy. [ Result/conclusion] The enhancement of data management capabili- ties can be carried out from the levels of demand, technologies, measures and goals in the big data era.