讨论三维光滑复射影簇X上全纯曲线f:C→X的退化性,设D1…,Dr为X上处于一般位置的相异的不可约有效除子,假定D1,Dr均为nef除子,而且存在正整数n1,…,nr,c,使得ninjnk(Di,Dj,Dk)=c对所有i,j,k均成立.如果,的像取不到D1,…,Dr上的点,那么只要r≥11,f必定代数退化,即它的像包含于X的某个代数真子集中.
We consider the degeneracy of holomorphic curve f from C to a complex nonsingular projective variety X of dimension 3. Let D1,..., Dr be distinct irreducible effective and nef divisors on X located in general position. Assume that there exist positive integers nl , nr, c, such that ninjnk(Di.Dj.Dk) = c for any i, j, k. If r≥ 11 and the image of f omits D1,…,Dr, then f is algebraically degenerate, i.e., its image is contained in a proper algebraic subset of X.