位置:成果数据库 > 期刊 > 期刊详情页
全矢-ARMA模型在机械振动强度预测研究的应用
  • ISSN号:1671-6833
  • 期刊名称:《郑州大学学报:工学版》
  • 时间:0
  • 分类:TH133[机械工程—机械制造及自动化]
  • 作者机构:郑州大学振动工程研究所,河南郑州450001
  • 相关基金:国家自然科学基金资助项目(51405453); 河南省教育厅科学技术研究重点项目指导计(13B603970.0); 河南省高等学校精密制造技术与工程重点学科开放实验室开放基金资助项目(PMTE201302A)
中文摘要:

在支持向量机(SVM)基础上拓展出的最小二乘支持向量机(LS-SVM)非线性泛化能力更好,具有较高的拟合和预测精度,目前被广泛应用于设备状态趋势预测中。为进一步提高其预测精度,结合基于同源信息融合的全矢谱技术提出一种新的趋势预测方法——全矢LS-SVM。该方法采用全矢谱技术融合双通道信息,相比传统单通道信号提取方法,保障LS-SVM预测数据特征提取的完整性,提高预测精度。将该方法应用于某电厂1号汽轮机振动数据的预测,实验结果表明,全矢LS-SVM方法具有较高的预测精度。

英文摘要:

Least squares support vector machine( LS-SVM) developed based on support vector machines( SVM) with better nonlinear generalizationability,has higher fitting and prediction precision. Now it is widely used in equipment condition trend prediction. In order to further improve its prediction accuracy,a new trend prediction method combined with full vector spectrum technology based on information fusion homologous with a same source was proposed—full vector LS-SVM. This method was used of full vector spectrum technology to fuse dual-channel information to ensure integrity of LS-SVM prediction data feature extraction compared to the traditional single-channel signal extraction methods,which improved prediction accuracy. The method is applied to predict the vibration data of No. 1 steam turbinein in a power plant,and the experimental results show that full vector LS-SVM has higher prediction accuracy.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《郑州大学学报:工学版》
  • 北大核心期刊(2011版)
  • 主管单位:河南省教育厅
  • 主办单位:郑州大学
  • 主编:李燕燕
  • 地址:郑州市高新区科学大道100号
  • 邮编:450001
  • 邮箱:gxb@zzu.edu.cn
  • 电话:0371-67781276 67781277
  • 国际标准刊号:ISSN:1671-6833
  • 国内统一刊号:ISSN:41-1339/T
  • 邮发代号:36-232
  • 获奖情况:
  • 全国高校优秀学报,河南省优秀科技期刊一等奖,河南省高校学报“三优”评比一等奖
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),美国数学评论(网络版),波兰哥白尼索引,美国剑桥科学文摘,英国科学文摘数据库,中国中国科技核心期刊,中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版)
  • 被引量:5750