本文给出了真实溶液下吸收式热泵的理想过程模型。首先讨论了真实溶液溶液流量无限大的工况,推导出其温度提升系数,与理想溶液相比,用修正系数kr进行修正,kr主要取决于发生器溶液和吸收器溶液的活度系数,对于第一类吸收式热泵,kr大于1,对于第二类吸收式热泵,kr小于1;分别讨论了第一类吸收式热泵和第二类吸收式热泵的COP,第一类吸收式热泵的COP相比理想溶液过程降低,第二类吸收式热泵的COP相比理想溶液有所升高。在溶液循环量无限大的结果的基础上,讨论了有限循环流量的真实溶液工况,定义了有限流量时的温度提升系数,与真实溶液溶液流量无限大相比,修正系数kr还受溶液放气范围的影响,溶液放气范围越大,修正系数kr越低;当溶液流量有限时,kr小于溶液流量无限大的工况,COP也低于溶液流量无限大的工况;真实溶液下溶液流量无限大或者有限均满足φCOP1〈TaTe/TgTc(第一类热泵),φCOP2〈0.5TaTe/TgTc(第二类热泵)。最后应用本文提出的真实溶液理想过程模型分析了两个实际案例。从这些案例可以看到,采用本文的分析方法,不需要计算内部复杂的溶液循环过程就能得到吸收式热泵的外部性能参数。本文给出的理想过程模型从新的角度出发对吸收式热泵的热量变换过程给出了清晰的描述。
An ideal process model based on real solution for absorption heat pump is obtained in this paper. First,temperature lift factor is derived for real solution with infinite solution flow rate,and a correction factor kris used to consider the difference with ideal solution,which is mainly dependent on the activity coefficient of solution in the generator and the absorber. For absorption heat pump,kris higher than 1 and the COP is lower than that with ideal solution; for absorption heat transformer,kris lower than 1 and the COP is higher than that with ideal solution. Then for real solution with finite flow rate,temperature lifting factor is defined and compared with solution of infinite flow rate. The correction factor kris lower for real solution with finite flow rate and influenced by the concentration difference of solution,and the higher the concentration difference,the lower the kr. The COP for solution with finite solution flow rate is lower than the COP with infinite solution flow rate. Whatever the flow rate of real solution is infinite or finite,it always meets that φCOP1〈TaTe/ TgTc( for absorption heat pump),φCOP2 〈0. 5TaTe/ TgTc( for absorption heat transformer). Finally,two cases are studied,which indicates that the external performance of absorption heat pump can be obtained only by the theoretical model proposed in this paper and without complex calculation of inside solution cycles. Using the theoretical model of this paper,a clear knowledge of heat conversion process can be gained for absorption heat pumps from a new point of view.