广义Petersen图P(n,m)是这样的一个图:它的顶点集是{ui,vi|i=0,1,…,n-1},边集是{uiui+1,vivi+m,uivi|i=0,1,…,n—1},这里m,n是正整数、加法是在模n下且m〈[n/2].这篇文章证明了P(2m+1,m)(m≥2)的Euler亏格是1,并且P(2m+2,m)(m≥5)的Euler亏格是2.
The generalized Petersen graph P(n,m) is such a graph that its vertex set is {ui, vi|i = 0, 1,…, n - 1} and edge set is {uiui+1, vivi+m, uivi|i = 0.1,…, n - 1}, where m, n are positive integers satisfying m 〈 [n/2] and indices is read modulo n. It is proved that the Euler genus of P(2m + 1, m) (m ≥ 2) is 1 and that the Euler genus of P(2m + 2, m) (m ≥ 5) is 2.